Some Combinatorial Problems on Halin Graphs

نویسندگان

  • M. Kavin
  • K. Keerthana
  • N. Sadagopan
  • Sangeetha. S
  • R. Vinothini
چکیده

Let T be a tree with no degree 2 vertices and L(T) = {l1,. .. , lr}, r ≥ 2 denote the set of leaves in T. An Halin graph G is a graph obtained from T such that V (G) = V (T) and E(G) = E(T) ∪ {{li, li+1} | 1 ≤ i ≤ r − 1} ∪ {l1, lr}. In this paper, we investigate combinatorial problems such as, testing whether a given graph is Halin or not, chromatic bounds, an algorithm to color Halin graphs with the minimum number of colors. Further, we present polynomial-time algorithms for testing and coloring problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 3-Approximation for the Pathwidth of Halin Graphs

We prove that the pathwidth of Halin graphs can be 3-approximated in linear time. Our approximation algorithms is based on a combinatorial result about respectful edge orderings of trees. Using this result we prove that the linear width of Halin graph is always at most three times the linear width of its skeleton. © 2005 Elsevier B.V. All rights reserved.

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...

متن کامل

Listing all spanning trees in Halin graphs - sequential and Parallel view

For a connected labelled graph G, a spanning tree T is a connected and an acyclic subgraph that spans all vertices of G. In this paper, we consider a classical combinatorial problem which is to list all spanning trees of G. A Halin graph is a graph obtained from a tree with no degree two vertices and by joining all leaves with a cycle. We present a sequential and parallel algorithm to enumerate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.6621  شماره 

صفحات  -

تاریخ انتشار 2014